
2020-11-13

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Classes, arrays, and
dynamic allocation

2
Classes, arrays and dynamical aalocation

Outline

• In this lesson, we will:

– Review how arrays of int are initialized

– Look at how to initialize an array of objects

– Look at when the constructor and destructor are called

– See how to dynamically allocate an instance of a class

• Understanding when the constructor and destructor are called

– See how to dynamically allocate an array of instances of a class

– Learn to call member functions and access member variables on
pointers to objects with the -> operator

– Learn some basic subtleties of pointers and objects

3
Classes, arrays and dynamical aalocation

Local arrays

• Recall the behavior of initializing local arrays:

// Set all values to the default

int data[5]{};

// Set the entries to 17, 35, 0, 0, 0

// - after the first two, the rest are set to the default

int data[5]{17, 35};

// Sets the five entries to 11, 12, 13, 14, 15

int data[5]{11, 12, 13, 14, 15};

4
Classes, arrays and dynamical aalocation

Local arrays

• Consider this class:
class C {

public:

C(double x = 0.0);

C(int m, int n = 0);

std::string about() const;

};

C::C(double x) {

std::cout << "Calling C(double)" << std::endl;

}

C::C(int m, int n) {

std::cout << "Calling C(int, int)" << std::endl;

}

std::string C::about() const {

return "Harmless";

}

1 2

3 4

2020-11-13

2

5
Classes, arrays and dynamical aalocation

Local arrays

• Creating an array of this class is as follows:
int main() {

C data[10]{ {1}, {}, {5, 7}, {2.5} };

return 0;

}

Output:
Calling C(int, int)
Calling C(double)
Calling C(int, int)
Calling C(double)
Calling C(double)
Calling C(double)
Calling C(double)
Calling C(double)
Calling C(double)
Calling C(double)

6
Classes, arrays and dynamical aalocation

Local arrays

• We can now call member functions on these entries:
int main() {

C data[10]{ {1}, {}, {5, 7}, {2.5} };

for (std::size_t k{0}; k < 10; ++k) {

std::cout << data[k].about() << std::endl;

}

return 0;

}

Continued output:
Harmless
Harmless
Harmless
Harmless
Harmless
Harmless
Harmless
Harmless
Harmless
Harmless

7
Classes, arrays and dynamical aalocation

Local arrays

• If a class does not have a constructor taking no arguments,

you must provide arguments for all entries in the local array
class D {

public:

D(int n);

std::string about() const;

};

D::D(int n) {

std::cout << "Calling D(int)" << std::endl;

}

std::string D::about() const {

return "Mostly harmless";

}

8
Classes, arrays and dynamical aalocation

Local arrays

• Now sufficient initial values must be given to fill up the array
int main() {

D data[5]{ {1}, {2}, {3}, {4}, {5} };

return 0;

for (std::size_t k{0}; k < 5; ++k) {

std::cout << data[k].about() << std::endl;

}

return 0;

}

Output:
Calling D(int)
Calling D(int)
Calling D(int)
Calling D(int)
Calling D(int)
Mostly harmless
Mostly harmless
Mostly harmless
Mostly harmless
Mostly harmless

5 6

7 8

2020-11-13

3

9
Classes, arrays and dynamical aalocation

Local arrays

• When a local array goes out of scope,
the destructor is called on each entry of that array

class E {

public:

~E();

};

E::~E() {

std::cout << "Calling E~()" << std::endl;

}

int main() {

E data[5]{};

std::cout << "Hello world!" << std::endl;

return 0;

}

Output:
Hello world!
Calling ~E()
Calling ~E()
Calling ~E()
Calling ~E()
Calling ~E()

10
Classes, arrays and dynamical aalocation

Objects as arguments to functions

• If a parameter is declared to be passed by value,

when that function is called, the copy constructor is called to
initialize that parameter as a copy of the argument

– Additionally, when the function returns,

the destructor is called on that parameter

• If a parameter is declared to be passed by reference,

when that function is called,
the parameter is an alias for the argument

– When the function returns, no destructor is called,

only the reference variable goes out of scope

11
Classes, arrays and dynamical aalocation

Objects as arguments to functions

• For example,
class F {

public:

F();

F(F const &original);
~F();

};

F::F() {

std::cout << " - Calling F()" << std::endl;

}

F::F(F const &original) {

std::cout << " - Calling F(F const &)" << std::endl;

}

F::~F() {

std::cout << " - Calling F~()" << std::endl;

}

12
Classes, arrays and dynamical aalocation

Objects as arguments to functions

• For example,
int main() {

F obj{};

std::cout << "Passing by reference:" << std::endl;

by_reference(obj);

std::cout << "Passing by value:" << std::endl;

by_value(obj);

std::cout << "Returning from main:" << std::endl;

return 0;

}

void by_reference(F &ref_param) {

}

void by_value(F param) {

}

Output:
- Calling F()

Passing by reference:
Passing by value:
- Calling F(F const &)
- Calling F~()

Returning from main:
- Calling F~()

9 10

11 12

2020-11-13

4

13
Classes, arrays and dynamical aalocation

Array of objects passed to a function

• Suppose you have a function that takes an array of objects

void by_array(F array[], std::size_t const capacity);

– This is just like any other array: just the address is passed

– The address passed is the address of the original array,

so no constructor or destructor need be called

14
Classes, arrays and dynamical aalocation

Array of objects passed to a function

• Consider this:
G::G(int new_value):
value_{ new_value } {

std::cout << "Calling G(int)" <<
std::endl;
}

G::G(G const &original):
value_{ original.value_ } {

std::cout << "Calling G(G const &)"
<< std::endl;

}

G::~G() {
std::cout << "Calling ~G()"

<< std::endl;
}

int G::retrieve() const {
return value_;

}

class G {
public:

G(int n);
G(G const &original);
~G();
int retrieve() const;

private:
int value_;

};

15
Classes, arrays and dynamical aalocation

Array of objects passed to a function

• Suppose you have a function
int main() {

G data[5]{ {10}, {11}, {12}, {13}, {14} };

print(data, 5);

return 0;

}

void print(G array[], std::size_t capacity) {

for (std::size_t k{0}; k < capacity; ++k) {

std::cout << array[k].retrieve() << std::endl;

}

}

Output:
Calling G(int)
Calling G(int)
Calling G(int)
Calling G(int)
Calling G(int)
10
11
12
13
14
Calling ~G()
Calling ~G()
Calling ~G()
Calling ~G()
Calling ~G()

16
Classes, arrays and dynamical aalocation

Dynamically allocated memory

• What we haven’t discussed yet is the dynamic allocation of objects

– It works just like should expect:

• You could call new int{} or new int{42}

• When you call new Class_name{…} for a single instance,

you can pass the arguments for the initialization

• The compiler decides which constructor you meant to call

– If there area no constructors that take zero arguments,
you must pass the minimum required arguments

– When you call delete, the destructor is called

• If you forget to call delete, the destructor is never called

13 14

15 16

2020-11-13

5

17
Classes, arrays and dynamical aalocation

Dynamically allocated memory

• Using our last class G,

int main() {

G *p_item{ new G{3} };

delete p_item;

p_item = nullptr;

return 0;

}

class G {
public:

G(int n);
G(G const &original);

~G();

int retrieve() const;
private:

int value_;
};

Output:
Calling G(int)
Calling ~G()

18
Classes, arrays and dynamical aalocation

Dynamically allocated memory

• Using our last class G,

int main() {

G *a_items{ new G[3]{ {101}, {102}, {103} } };

delete[] a_items;

a_items = nullptr;

return 0;

}
Output:

Calling G(int)
Calling G(int)
Calling G(int)
Calling ~G()
Calling ~G()
Calling ~G()

19
Classes, arrays and dynamical aalocation

Warning!!!!!

• Using our last class G,

int main() {

G *a_items{ new G[3]{ {101}, {102}, {103} } };

delete a_items;

a_items = nullptr;

return 0;

}
Output:

Calling G(int)
Calling G(int)
Calling G(int)
Calling ~G()

20
Classes, arrays and dynamical aalocation

Accessing member variables and functions

• To access a member variable or function
on a pointer to an instance of a class,

you use -> and not .

int main() {

G item{ 42 };

G *p_item{ new G{91} };

std::cout << item.retrieve() << std::endl;

std::cout << p_item->retrieve() << std::endl;

delete p_item;

p_item = nullptr;

return 0;

}

class G {
public:

G(int n);
G(G const &original);

~G();

int retrieve() const;
private:

int value_;
};

Output:
Calling G(int)
Calling G(int)
42
91
Calling ~G()
Calling ~G()

17 18

19 20

2020-11-13

6

21
Classes, arrays and dynamical aalocation

Dynamically allocated memory

• Recall that with a dynamically allocated array of integers,
the indexing operator already gives us the kth entry

int main() {

int *a_items{ new int[3]{ 101, 102, 103 } };

for (std::size_t k{0}; k < 3; ++k) {

std::cout << a_items[k] << std::endl;

}

delete[] a_items;

a_items = nullptr;

return 0;

}

Output:
101
102
103

22
Classes, arrays and dynamical aalocation

Dynamically allocated memory

• Similarly, if we have a dynamically allocated array of objects,
the index accesses the entry of the array, so we use the dot operator .

int main() {

G *a_items{ new G[3]{ {101}, {102}, {103} } };

for (std::size_t k{0}; k < 3; ++k) {

std::cout << a_items[k].retrieve() << std::endl;

}

delete[] a_items;

a_items = nullptr;

return 0;

}

Output:
Calling G(int)
Calling G(int)
Calling G(int)
101
102
103
Calling ~G()
Calling ~G()
Calling ~G()

23
Classes, arrays and dynamical aalocation

Accessing member variables and functions

• You can have an array of pointers:
int main() {

G *array[5]{};

for (std::size_t k{0}; k < 5; k += 2) {

array[k] = new G{ 100 + k };

}

for (std::size_t k{0}; k < 5; ++k) {

if (array[k] != nullptr) {

std::cout << array[k]->retrieve()

<< std::endl;

delete array[k];

array[k] = nullptr;

}

}

return 0;

}

Output:
Calling G()
Calling G()
Calling G()
100
Calling ~G()
102
Calling ~G()
104
Calling ~G()

24
Classes, arrays and dynamical aalocation

Remembering which…

• Rule:

– If you can print the variable (a local variable or parameter,
a reference to either of these) or array entry,

and printing it produces an address, use the arrow operator ->

– Otherwise, use the dot operator .

• Note, if you have not overloaded the appropriate operator<< for

printing an instance of a particular class,
printing it may cause a compilation error

• You can always print addresses

21 22

23 24

2020-11-13

7

25
Classes, arrays and dynamical aalocation

Remembering which…

• Guideline:

– If you meticulously follow the naming convention of prefixing
pointers with p_name,

this will help you remember when to use p_name->member(…)

• You will call delete p_name; on any such variable

– If you prefix any dynamically allocated array with a_name,
this will help you to remember to use a_name[k].member(…)

• You will call delete[] a_name; on any such variable

– Otherwise, if you have just name use the dot operator name.member(…)

• It is possible to have pointers to pointers to …, etc.,
but that is currently beyond the scope of this class ☺

26
Classes, arrays and dynamical aalocation

One last example

• Suppose we have the following class:
class Node {

public:

int value_;

Node *p_next_;

};

• This class stores:

– An integer

– An address of another instance of this class

• That is, a pointer to another instance of this class

27
Classes, arrays and dynamical aalocation

One last example

• Let’s use this class:
int main() {

Node *p_42{ new Node{ 42, nullptr } };

std::cout << " p_42 == " << p_42 << std::endl;

Node *p_91{ new Node{ 91, p_42 } };

std::cout << " p_42 == " << p_42 << std::endl;

std::cout << p_91->value_ << std::endl;

std::cout << p_91->p_next_ << std::endl;

std::cout << p_91->p_next_->value_ << std::endl;

std::cout << p_91->p_next_->p_next_ << std::endl;

delete p_91->p_next_;

p_91->p_next_ = nullptr;

// We can no longer call delete p_42;

p_42 = nullptr; // Dangling pointer!!!

delete p_91;

p_91 = nullptr;

return 0;

}

class Node {
public:

int value_;
Node *p_next_;

};

Output:
p_42 == 0x13f0a8
p_91 == 0xb03c50
91
0x13f0a8
42
0

0x13f0a8 42 value_

0x0 p_next_

0xb03c50 91 value_

0x13f0a8 p_next_0x0

28
Classes, arrays and dynamical aalocation

Summary

• Following this lesson, you now

– Know how to initialize arrays of objects

• Initial values are required if no constructor takes no values

– Understand when the constructor and destructor is called

– Know how to dynamically allocate and delete objects and arrays of
objects

– Have a better understanding of arrays and pointers

– Have been introduced to using the . operator and the -> operator

– Have been introduced to classes that have member variables that are
themselves pointers

25 26

27 28

2020-11-13

8

29
Classes, arrays and dynamical aalocation

References

[1] https://en.wikipedia.org/wiki/C++_classes

30
Classes, arrays and dynamical aalocation

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

31
Classes, arrays and dynamical aalocation

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

29 30

31

